- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Zhengda (5)
-
Yang, Qiong (5)
-
Sun, Meng (3)
-
Wang, Shiyuan (2)
-
Jin, Minjun (1)
-
Khain, Daniel (1)
-
Liu, Shixuan (1)
-
Maryu, Gembu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sun, Meng; Li, Zhengda; Yang, Qiong (, Journal of Chemical Education)
-
Sun, Meng; Li, Zhengda; Wang, Shiyuan; Maryu, Gembu; Yang, Qiong (, Analytical Chemistry)
-
Li, Zhengda; Liu, Shixuan; Yang, Qiong (, Cell Systems)
-
Li, Zhengda; Yang, Qiong (, Quantitative Biology)BackgroundSelf‐sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single‐cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators. ResultsApproaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest,de novooscillators in both live cells and cell‐free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations. ConclusionWith the recent development of biological and computational tools, both approaches have made significant achievements.more » « less
An official website of the United States government
